Analysis Of Increasing Student Service Satisfaction Using K-Means Clustering Algorithm and Gaussian Mixture Models (GMM)

Author:

Adek Maulidya ,Khairul ,Zulham Sitorus ,Andysah Putera Utama Siahaan ,Muhammad Iqbal

Abstract

This research analyzes the comparison between two cluster analysis algorithms, namely K-Means Clustering and Gaussian Mixture Model (GMM), to gain a deeper understanding of data structure and model suitability. The results of the analysis show that the silhouette score value from using the K-Means algorithm is 0.44528, indicating relatively good cluster grouping, while the use of the Gaussian Mixture Model produces a silhouette score value of -0.500119, indicating a mismatch between the data points in the cluster and the probability overlap between clusters. Therefore, the conclusion states that based on the silhouette score value, using the K-Means Clustering algorithm is better because it produces better and more cohesive cluster grouping. The results of this analysis are that campuses can use this information to understand student needs more effectively and take appropriate corrective steps.

Publisher

CV Hawari

Reference10 articles.

1. Ahmad, I. A., Al-Nayar, M. M. J., & Mahmood, A. M. (2023). A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN. Bulletin of Electrical Engineering and Informatics, 12(6), 3727–3735.

2. Ajimotokan, H. A. (n.d.). Research Techniques Qualitative, Quantitative and Mixed Methods Approaches for Engineers.

3. Banachewicz, K., & Massaron, L. (n.d.). The Kaggle book : data analysis and machine learning for competitive data science.

4. Bahri, S. (2018). Metodologi Penelitian Bisnis Lengkap dengan Teknik Pengolahan Data SPSS. Yogyakarta : CV ANDI OFFSET.

5. Borishade, T. T., Ogunnaike, O. O., Salau, O., Motilewa, B. D., & Dirisu, J. I. (2021). Assessing the relationship among service quality, student satisfaction and loyalty: the NIGERIAN higher education experience. In Heliyon (Vol. 7, Issue 7). Elsevier Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3