Layer-wise domain correction for unsupervised domain adaptation

Author:

Li Shuang,Song Shi-jiORCID,Wu Cheng

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

Zhejiang University Press

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing

Reference43 articles.

1. Ajakan H, Germain P, Larochelle H, et al., 2014. Domainadversarial neural networks. https://arxiv.org/abs/1412.4446

2. Ben-David S, Blitzer J, Crammer K, et al., 2010. A theory of learning from different domains. Mach Learn, 79(1-2):151–175. https://doi.org/10.1007/s10994-009-5152-4

3. Blitzer J, McDonald R, Pereira F, 2006. Domain adaptation with structural correspondence learning. Proc Conf on Empirical Methods in Natural Language Processing, p.120–128. https://doi.org/10.3115/1610075.1610094

4. Borgwardt KM, Gretton A, Rasch MJ, et al., 2006. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57. https://doi.org/10.1093/bioinformatics/btl242

5. Chen MM, Weinberger KQ, Blitzer JC, 2011. Co-training for domain adaptation. Advances in Neural Information Processing Systems, p.2456–2464.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic bias alignment and discrimination enhancement for unsupervised domain adaptation;Neural Computing and Applications;2024-02-20

2. Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis;IEEE Transactions on Medical Imaging;2023-12

3. Dual collaboration for decentralized multi-source domain adaptation;Frontiers of Information Technology & Electronic Engineering;2022-12

4. When to transfer: a dynamic domain adaptation method for effective knowledge transfer;International Journal of Machine Learning and Cybernetics;2022-07-23

5. Building damage detection based on multi-source adversarial domain adaptation;Journal of Applied Remote Sensing;2021-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3