Efficient keyword search over graph-structured data based on minimal covered r-cliques
Author:
Publisher
Zhejiang University Press
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing
Link
http://link.springer.com/content/pdf/10.1631/FITEE.1800133.pdf
Reference37 articles.
1. Bergamaschi S, Guerra F, Interlandi M, et al., 2013. QUEST: a keyword search system for relational data based on semantic and machine learning techniques. Proc VLDB Endowm, 6(12): 1222–1225. https://doi.org/10.14778/2536274.2536281
2. Bergamaschi S, Guerra F, Interlandi M, et al., 2016. Combining user and database perspective for solving keyword queries over relational databases. Inform Syst, 55: 1–19. https://doi.org/10.1016/j.is.2015.07.005
3. Bron C, Kerbosch J, 1973. Finding all cliques of an undirected graph. Commun ACM, 16(9): 575–577. https://doi.org/10.1145/362342.362367
4. Calado P, da Silva AS, Laender AHF, et al., 2004. A Bayesian network approach to searching Web databases through keyword-based queries. Inform Process Manag, 40(5): 773–790. https://doi.org/10.10167/j.ipm.2004.03.002
5. Dasari NS, Ranjan D, Mohammad Z, 2014. Maximal clique enumeration for large graphs on Hadoop framework. Proc 1st Workshop on Parallel Programming for Analytics Applications, p.21–30. https://doi.org/10.1145/2567634.2567640
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. XSearchKG: A Platform for Explainable Keyword Search over Knowledge Graphs;Lecture Notes in Computer Science;2024
2. On solving simplified diversified top-k s-plex problem;Computers & Operations Research;2023-05
3. Efficient Top-k Keyword Search in Relational Databases Considering Maximum Integrated Candidate Network (MICN);2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS);2022-12-28
4. Semantic query expansion method based on pay-as-yougo fashion for graph model;Journal of Physics: Conference Series;2021-07-01
5. Erratum to: Efficient keyword search over graph-structured data based on minimal covered r-cliques;Frontiers of Information Technology & Electronic Engineering;2020-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3