Quantification of the influence of rolling stock failures on track deterioration

Author:

Ye Yun-guangORCID,Shi Da-chuanORCID,Poveda-Reyes SaraORCID,Hecht Markus

Abstract

AbstractThis study focuses on the quantification of the influence of rolling stock failures (RSFs) on railway infrastructure. Taking the wheel flat, a common RSF, as an example, we introduce four quantification indexes to evaluate the influence on the following four deterioration mechanisms: track settlement (TS), track component fatigue (TCF), abrasive wear (AW), and rolling contact fatigue (RCF). Our results indicate that TS, TCF, and AW increase sharply with the increase of the wheel flat length and the vehicle speed, and this increasing trend becomes more acute with the increase of the wheel flat length and the vehicle speed. At low speeds, RCF increases gradually as the wheel flat length increases; at high speeds, it increases sharply at first and then decreases gradually. The influence of the wheel flat on TCF and AW is the most obvious, followed by TS and RCF. These findings can help infrastructure managers (IMs) to better understand infrastructure conditions related to RSFs and can aid them in managing problems with vehicle abnormality in track access charging.

Funder

the Assets4Rail Project Funded by the Shift2Rail Joint Undertaking under the EU’s H2020 Program

the China Scholarship Council . Open access funding provided by Projekt DEAL

Publisher

Zhejiang University Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3