Physics-informed neural networks for estimating stress transfer mechanics in single lap joints
Author:
Funder
the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India
Publisher
Zhejiang University Press
Subject
General Engineering
Link
https://link.springer.com/content/pdf/10.1631/jzus.A2000403.pdf
Reference46 articles.
1. Abueidda DW, Almasri M, Ammourah R, et al., 2019. Prediction and optimization of mechanical properties of composites using convolutional neural networks. Composite Structures, 227:111264. https://doi.org/10.1016/j.compstruct.2019.111264
2. Adams RD, Mallick V, 1992. A method for the stress analysis of lap joints. The Journal of Adhesion, 38(3–4):199–217. https://doi.org/10.1080/00218469208030455
3. Ajayan PM, Schadler LS, Braun PV, 2003. Nanocomposite Science and Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
4. Anitescu C, Atroshchenko E, Alajlan N, et al., 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641
5. Barile C, Casavola C, Moramarco V, et al., 2020. Bonding characteristics of single-and joggled-lap CFRP specimens: mechanical and acoustic investigations. Applied Sciences, 10(5):1782. https://doi.org/10.3390/app10051782
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Applications of artificial intelligence/machine learning to high-performance composites;Composites Part B: Engineering;2024-10
2. Surrounding rock classification from onsite images with deep transfer learning based on EfficientNet;Frontiers of Structural and Civil Engineering;2024-08-13
3. Deep machine learning approaches for battery health monitoring;Energy;2024-08
4. A Case Study Applying Mesoscience to Deep Learning;Engineering;2024-08
5. Methods for enabling real-time analysis in digital twins: A literature review;Computers & Structures;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3