Evaluación de la estabilidad de taludes en presas de tierra empleando Redes Neuronales Artificiales

Author:

Flores Berenguer Isaida1,García Tristá Jenny1,Glez Haramboure Yoermes1

Affiliation:

1. Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE)

Abstract

Se propone el análisis de la estabilidad de taludes en presas de tierra en Cuba, empleando Redes Neuronales Artificiales. Actualmente, no hay precedentes en el país de este tipo de estudios. Por tanto, se evalúan los modelos de la caja de herramientas de redes neuronales de MATLAB® fijando como punto de partida una red perceptrón multicapa con algoritmo de retropropagación, con dos capas ocultas, combinando las funciones de entrenamiento y de activación disponibles. Se analiza una presa de tierra conformada por cuatro suelos parcialmente saturados en la cortina, en estado de operación y final de la construcción. Se obtuvo un coeficiente R2 de 0,99998 para la función de Regularización Bayesiana considerando la función tangente hiperbólica en la primera capa y lineal pura en la segunda capa. Se propone a futuro ampliar el uso del método evaluando diversas variables que afectan la estabilidad de taludes en presas bajo múltiples condiciones de carga.

Publisher

Revista de la Universidad del Zulia, Universidad del Zulia

Reference22 articles.

1. Aldabas, E. (2002). Introducción al reconocimiento de patrones mediante redes neuronales. Conferencias de ingeniería electrónica (pp. 1–3).

2. Beiranvand, B., Mohammadzadeh, A., & Komasi, M. (2019). Effect of different parameters of heterogeneous dams on safety factor using the neural network . Case study : Marvak dam. Nexo Revista Científica, 32(2), 126–138. doi:10.5377/nexo.v32i02.9263

3. Chafla, E. X. (2019). Análisis del rendimiento de algoritmos de entrenamiento de Redes Neuronales Artificiales aplicadas al modelamiento dinámico de represas hidroeléctricas, mediante el error de predicción del nivel de embalse de agua. Tesis de Maestría. Escuela Superior Politécnica de Chimborazo.

4. Costa, C. (2016). Predicción de la estabilidad de presas heterogéneas mediante redes neuronales artificiales. Tesis de Maestría. Universidad Politécnica de Madrid.

5. Ermini, L., Catani, F., & Casagli, N. (2005). Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66(3-4), 327–343. doi:http://doi.org/10.1016/j.geomorph.2004.09.025

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3