Investigation about electrostatic three-wall carbon nanotubes (MWCNT), including doping with BN: a model for the nano capacitor

Author:

Farhami Nabieh1,Monajjemi Majid2

Affiliation:

1. Department of Chemistry, Science and Research Branch, Islamic Azad University

2. Department of chemical engineering, Central Tehran Branch, Islamic Azad University

Abstract

Three-walled boron & nitride nanotubes are used for a theoretical study of a cylindrical molecular capacitor, including an inner cylinder with a positive charge distribution and an outer cylinder with a negative charge distribution. Due to the semiconductor characteristic and dielectric functionality of SWBNTs, DWBNTs and TW (B&C) NTs can be used as a capacitor. Although the SWBNTs @ SWCNTs behave like Nano cylindrical capacitors, we have shown in this study that a dopant of BN in the inner cylinder reduces the energy gap and yields a better capacitance. The dopant of BN in the outer cylinder results in an inverse charge distribution (outer is positive and inner is negative). Therefore under these circumstances, the term capacitor would be meaningless, thought, the gap and the interaction energy decreases compared to the non-dopant form of those capacitors. Density functional theory (DFT) calculations have performed for the structure and stability of three wall carbon Nano tubes (TW (BN&C) NTs). In this work, it was calculated the geometrical structure, and stability to predict NMR and thermodynamics parameters. A mixing of SWBNNTs @ DWCNTs has been modeled and calculated for the suitable structures to storage the H2 molecules for increasing the dielectric. We have found these kinds of Nano-structures are useful for maximum storages of charges compare to other cylindrical capacitor.

Publisher

Revista de la Universidad del Zulia, Universidad del Zulia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3