Affiliation:
1. Islamic Azad University
Abstract
Neural networks and genetic programming in the investigation of new methods for predicting rainfall in the catchment area of the city of Sari. Various methods are used for prediction, such as the time series model, artificial neural networks, fuzzy logic, fuzzy Nero, and genetic programming. Results based on statistical indicators of root mean square error and correlation coefficient were studied. The results of the optimal model of genetic programming were compared, the correlation coefficients and the root mean square error 0.973 and 0.034 respectively for training, and 0.964 and 0.057 respectively for the optimal neural network model. Genetic programming has been more accurate than artificial neural networks and is recommended as a good way to accurately predict.
Publisher
Revista de la Universidad del Zulia, Universidad del Zulia
Reference13 articles.
1. Abrahart R.J. and See L. (2000). Neural network vs ARMA modeling : Constructing benchmark case study of river flow prediction, Pp. 1021-1028. 3rd International Conference on Hydroinformatics. Copenhagen, Denmark.
2. Alvisi S., Mascellani G., Franchini M. and Bardossy A. (2005). Water level forecasting through fuzzy logic and artificial neural network approaches. J Hydrol Earth Syst Sci 2: 1107-1145.
3. Aytek A., Asce M. and Alp M., (2008). An application of artificial intelligence for rainfall runoff modeling. J Hydrol Earth Syst Sci 117(2): 145-155.
4. Aytek, A. and Kisi, O. (2008). A genetic programming approach to suspended sediment modeling. J Hydrol Eng 351: 288-298.
5. Dogan E., Isik S., Toluk T. and Sandalci M. (2007). Daily streamflow forecasting using artificial neural networks. Pp. 448-459. International Congress River Flood Management. Ankara, Turkey.