Comparison of neural networks and genetic algorithms to determine missing precipitation data (Case study: the city of Sari)

Author:

Mahdavi Ali1,Najarchi Mohsen1,Hazaveie Emadoddin1,Mirhosayni Hazave Seyed Mohammad1,Mahdai Najafizadeh Seyed Mohammad1

Affiliation:

1. Islamic Azad University

Abstract

Neural networks and genetic programming in the investigation of new methods for predicting rainfall in the catchment area of the city of Sari. Various methods are used for prediction, such as the time series model, artificial neural networks, fuzzy logic, fuzzy Nero, and genetic programming. Results based on statistical indicators of root mean square error and correlation coefficient were studied. The results of the optimal model of genetic programming were compared, the correlation coefficients and the root mean square error 0.973 and 0.034 respectively for training, and 0.964 and 0.057 respectively for the optimal neural network model. Genetic programming has been more accurate than artificial neural networks and is recommended as a good way to accurately predict.

Publisher

Revista de la Universidad del Zulia, Universidad del Zulia

Reference13 articles.

1. Abrahart R.J. and See L. (2000). Neural network vs ARMA modeling : Constructing benchmark case study of river flow prediction, Pp. 1021-1028. 3rd International Conference on Hydroinformatics. Copenhagen, Denmark.

2. Alvisi S., Mascellani G., Franchini M. and Bardossy A. (2005). Water level forecasting through fuzzy logic and artificial neural network approaches. J Hydrol Earth Syst Sci 2: 1107-1145.

3. Aytek A., Asce M. and Alp M., (2008). An application of artificial intelligence for rainfall runoff modeling. J Hydrol Earth Syst Sci 117(2): 145-155.

4. Aytek, A. and Kisi, O. (2008). A genetic programming approach to suspended sediment modeling. J Hydrol Eng 351: 288-298.

5. Dogan E., Isik S., Toluk T. and Sandalci M. (2007). Daily streamflow forecasting using artificial neural networks. Pp. 448-459. International Congress River Flood Management. Ankara, Turkey.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3