Applying Artificial Intelligence Techniques to Improve Clinical Diagnosis of Alzheimer’s Disease

Author:

Abdullah Farid Ahmed,Selim Gamal Ibrahim,Khater Hatem Awad A.

Abstract

Alzheimer's disease (AD) is a significant regular type of dementia that causes damage in brain cells. Early detection of AD acting as an essential role in global health care due to misdiagnosis and sharing many clinical sets with other types of dementia, and costly monitoring the progression of the disease over time by magnetic reasoning imaging (MRI) with consideration of human error in manual reading. Our proposed model in the first stage, apply the medical dataset to a composite hybrid feature selection (CHFS) to extract new features for select the best features to improve the performance of the classification process due to eliminating obscures. In the second stage, we applied a dataset to a stacked hybrid classification system to combine Jrip and random forest classifiers with six model evaluations as meta-classifier individually to improve the prediction of clinical diagnosis. All experiments conducted on a laptop with an Intel Core i7- 8750H CPU at 2.2 GHz and 16 G of ram running on windows 10 (64 bits). The dataset evaluated using an explorer set of WEKA data mining software for the analysis purpose. The experimental show that the proposed model of (CHFS) feature extraction performs better than proncipal component analysis (PCA), and lead to effectively reduced the false-negative rate with a relatively high overall accuracy with support vector machine (SVM) as meta-classifier of 96.50% compared to 68.83% which is considerably better than the previous state-of-the-art result. The receiver operating characteristic (ROC) curve was equal to 95.5%. Also, the experiment on MRI images Kaggle dataset of CNN classification process with 80.21% accuracy result. The results of the proposed model show an accurate classify Alzheimer's clinical samples against MRI neuroimaging for diagnoses AD at a low cost.

Publisher

Mokslines leidybos deimantas, MB

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3