Abstract
Let $S^*(\alpha, \beta, A, B) (0\le \alpha<1, 0<\beta\le 1, -1\le A <S\le 1, 0<B\le 1)$, denote the class of functions $f(z) = z+ \sum_{n=2}^\infty a_nz^n$ analytic in $U = \{z : |z|< 1\}$ which satisfy for $z=re^{i\theta}\in U$,
\[ \left|\frac{z\frac{f'(z)}{f(z)}-1}{(B-A)\beta\left(z\frac{f'(z)}{f(z)}-\alpha\right)+A\left(z\frac{f'(z)}{f(z)}-1\right)}\right|<1.\]
It is the purpose of this paper to show a representation formula, a distortion theo- rem, a sufficient condition for this class $S^*(\alpha, \beta, A, B)$. Furthermore, we maximize $|a_3-\mu a_2^2|$ over the class $S^*(\alpha, \beta, A, B)$ and we give the radii of convexity for functions in the class $S^*(\alpha, \beta, A, B)$.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献