Abstract
Let $K[C,D,p, \alpha]$, $- 1 \le D <C \le 1$ and $0\le \alpha <p$ denote the class of functions
\[ g(z) =z^p+\sum_{n=p+1}^\infty b_nz^n \]
analytic in the unit disc $U =\{z:|z|<1\}$ and satisfying the condition $1+\frac{zg''(z)}{g'(z)}$ is subcoordinate to $\frac{p+[pD+(C-D)(p-\alpha)]z}{1+Dz}$. We investigate the subclass of p-valent close-to-convex functions
\[ f(z) =z^p+\sum_{n=p+1}^\infty a_nz^n, \]
for which there exists $g(z)\in K[C,D,p, \alpha]$ such that $\frac{pf'(z)}{g'(z)}$ is subcoordinate to $\frac{p+[pB+(A-B)(p-\beta)]z}{1+Bz}$, $- 1 \le B <A \le 1$ and $0\le \beta <p$ . Distortion and rotation theorems and coefficient bounds are obtained.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A note on generalized subclasses of multivalent quasi-convex functions;Journal of Applied Mathematics, Statistics and Informatics;2022-05-01