Author:
Anderson D. D.,Camillo Victor
Abstract
Let $ R $ be a commutative ring with 1. We define $ R $ to be an annihilator-semigroup ring if $ R $ has an annihilator-Semigroup $ S $, that is, $ (S, \cdot) $ is a multiplicative subsemigroup of $ (R, \cdot) $ with the property that for each $ r \in R $ there exists a unique $ s \in S $ with $ 0 : r = 0 : s $. In this paper we investigate annihilator-semigroups and annihilator-semigroup rings.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献