Upper bounds for Ricci curvatures for submanifolds in Bochner-Kaehler manifolds
-
Published:2020-03-25
Issue:1
Volume:51
Page:
-
ISSN:2073-9826
-
Container-title:Tamkang Journal of Mathematics
-
language:
-
Short-container-title:Tamkang J. Math.
Author:
Lone Mehraj Ahmad,Matsuyama Yoshio,Al-Solamy Falleh R.,Shahid Mohammad Hasan,Jamali Mohammed
Abstract
Chen established the relationship between the Ricci curvature and the squared norm of meancurvature vector for submanifolds of Riemannian space form with arbitrary codimension knownas Chen-Ricci inequality. Deng improved the inequality for Lagrangian submanifolds in complexspace form by using algebraic technique. In this paper, we establish the same inequalitiesfor different submanifolds of Bochner-Kaehler manifolds. Moreover, we obtain improvedChen-Ricci inequality for Kaehlerian slant submanifolds of Bochner-Kaehler manifolds.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献