Abstract
A variety of polynomials, their extensions and variants have been extensively investigated, due mainly to their potential applications in diverse research areas. In this paper, we aim to introduce Laguerre-based generalized Apostol type polynomials and investigate some properties and identities involving them. Among them, some differential-recursive relations for the Hermite-Laguerre polynomials, which are expressed in terms of generalized Apostol type numbers and the Laguerre-based generalized Apostol type polynomials, an implicit summation formula and addition-symmetry identities for the Laguerre-based generalized Apostol type polynomials are presented. The results presented here, being very general, are pointed out to reduce to yield some known or new formulas and identities for relatively simple polynomials and numbers.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献