On a class of Kirchhoff type problems with singular exponential nonlinearity
-
Published:2023-04-26
Issue:
Volume:
Page:
-
ISSN:2073-9826
-
Container-title:Tamkang Journal of Mathematics
-
language:
-
Short-container-title:Tamkang J. Math.
Author:
Sattaf Mebarka,Khaldi Brahim
Abstract
We study the following singular Kirchhoff type problem
\[\left( P\right) \left\{
\begin{array} [c]{c}
-m\left({\displaystyle\int\limits_{\Omega}}\left\vert \nabla u\right\vert ^{2}dx\right) \Delta u=h\left( u\right)
\frac{e^{\alpha u^{2}}}{\left\vert x\right\vert ^{\beta}}\text{ \ \ \ in} \Omega,\\
u=0 \text{on}\; \partial\Omega
\end{array} \right.
\]
where $\Omega\subset\mathbb{R}^{2}$ is a bounded domain with smooth boundary and $0\in\Omega,$ $\beta\in\left[ 0,2\right)$, $\alpha>0$ and $m$ is a continuous function
on $\mathbb{R}^{+}.$ Here, $h$ is a suitable preturbation of $e^{\alpha u^{2}}$ as $u\rightarrow\infty.$ In this paper, we prove the existence of solutions of
$(P)$. Our tools are Trudinger-Moser inequality with a singular weight and the mountain pass theorem
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics