Abstract
Let $D$ be a finite and simple digraph with vertex set $V(D)$. A weak signed Roman dominating function (WSRDF) on a digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the condition that $\sum_{x\in N^-[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ consists of $v$ and allvertices of $D$ from which arcs go into $v$. The weight of a WSRDF $f$ is $\sum_{v\in V(D)}f(v)$. The weak signed Roman domination number $\gamma_{wsR}(D)$ of $D$ is the minimum weight of a WSRDF on $D$. In this paper we initiate the study of the weak signed Roman domination number of digraphs, and we present different bounds on $\gamma_{wsR}(D)$. In addition, we determine the weak signed Roman domination number of some classesof digraphs.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献