Abstract
Let $R \subseteq S$ be a unital extension of commutative rings. Then $R$ is a pure $R$-submodule of $S$ if and only if, for each finite set of algebraically independent indeterminates $\{X_1, \, \dots \,,X_n\}$ over $S$ and each ideal $I$ of $R[X_1, \, \dots \,,X_n]$, one has $IS[X_1, \, \dots \,,X_n] \cap R[X_1, \, \dots \,,X_n]=I$. Suppose also that $R$ is a Pr\"ufer domain. Then $R$ is a pure $R$-submodule of $S$ if and only if, for each unital homomorphism of commutative rings $R \to T$, each chain of prime ideals of $T$ can be covered by a corresponding chain of prime ideals of $T \otimes_R S$.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. La conjecture du facteur direct;Publications mathématiques de l'IHÉS;2017-12-07