Author:
Arroyo Edward,Arroyo Fangjun
Abstract
Rook placements and rook polynomials have been studied by mathematicians since the early 1970's. Since then many relationships between rook placements and other subjects have been discovered (cf. [1], [6-15]). In [2] and [3], K. Ding introduced the rook length polynomials and the $ \gamma - $compatible rook length polynomials. In [3] and [4], he used these polynomials to establish a connection between rook placements and algebraic geometry for the first time. In this paper, we give explicit formulas for the $ \gamma - $compatible rook length polynomials in more general cases than considered in [3]. In particular, we generalize the formula for the rook length polynomial in the parabolic case in [2] to the $ \gamma -$compatible rook length polynomial.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献