Author:
Ceng Lu-Chuan,Wen Ching-Feng
Abstract
Let $X$ be a real reflexive Banach space. In this paper, we first introduce the concept of Levitin-Polyak well-posedness of a completely generalized mixed variational inequality in $X$, and establish some characterizations of its Levitin-Polyak well-posedness. Under suitable conditions, we prove that the Levitin-Polyak well-posedness of a completely generalized mixed variational inequality is equivalent both to the Levitin-Polyak well-posedness of a corresponding inclusion problem and to the Levitin-Polyak well-posedness of a corresponding fixed point problem. We also derive some conditions under which a completely generalized mixed variational inequality in $X$ is Levitin-Polyak well-posed. Our results improve, extend and develop the early and recent ones in the literature.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献