A GCD and LCM-like inequality for multiplicative lattices
-
Published:2016-09-30
Issue:3
Volume:47
Page:261-270
-
ISSN:2073-9826
-
Container-title:Tamkang Journal of Mathematics
-
language:
-
Short-container-title:Tamkang J. Math.
Author:
Anderson Dan D.,Aoki Takashi,Izumi Shuzo,Ohno Yasuo,Ozaki Manabu
Abstract
Let $A_1,\ldots,A_n$ $(n\ge 2)$ be elements of an commutative multiplicative lattice. Let $G(k)$ (resp., $L(k)$) denote the product of all the joins (resp., meets) of $k$ of the elements. Then we show that $$L(n)G(2)G(4)\cdots G(2\lfloor n/2 \rfloor ) \leq G(1)G(3)\cdots G(2\lceil n/2 \rceil -1).$$ In particular this holds for the lattice of ideals of a commutative ring. We also consider the relationship between $$G(n)L(2)L(4)\cdots L(2\lfloor n/2 \rfloor ) \text{ and } L(1)L(3)\cdots L(2\lceil n/2 \rceil -1)$$and show that any inequality relationships are possible.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics