The Dispersion Relation of Short Wind Waves from Space–Time Wave Measurements*

Author:

Wang David W.1,Hwang Paul A.1

Affiliation:

1. Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Abstract

Abstract To study the dispersion relation of short wind waves, a linear wave gauge array (WGA) is configured and mounted on a wave-following buoy to conduct in situ space–time measurements of short gravity waves. Results from two field deployments of the WGA buoy in growing seas are presented. The two-dimensional (2D) wavenumber–frequency spectra derived from the space–time measurements provide a direct examination on the relation of wave frequency and wavenumber of short waves in the along-wind direction. Both wavenumber-based and frequency-based phase velocities are extracted from the 2D spectra. The effect of higher harmonics resulting from the Fourier decomposition of nonlinear wave profiles is more prominent to the frequency-based phase velocity than the wavenumber-based phase velocity. The wavenumber-based phase velocity is consistent with that according to the linear dispersion relation, while the frequency-based phase velocity becomes larger due to the higher harmonics.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference28 articles.

1. The APL wave gauge system.;Chapman,1991

2. Directional spectra of wind-generated waves.;Donelan;Philos. Trans. Roy. Soc. London,1985

3. Interpretation of phase velocity measurements of wind-generated surface waves.;Dudis;J. Fluid Mech,1981

4. Shoaling gravity waves: Comparison between field observations, linear theory, and a nonlinear model.;Elgar;J. Fluid Mech,1985

5. Optical determination of the phase velocity of short gravity waves.;Gotwols;J. Geophys. Res,1980

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3