Optimal Growth of Antarctic Circumpolar Waves

Author:

Aiken Christopher M.1,England Matthew H.1,Reason Christopher J. C.2

Affiliation:

1. Centre for Environmental Modelling and Prediction, School of Mathematics, University of New South Wales, Sydney, New South Wales, Australia

2. Department of Oceanography, University of Cape Town, Cape Town, South Africa

Abstract

Abstract Generalized stability theory is applied to a simple dynamical model of interannual ocean–atmosphere variability in the southern midlatitudes to determine the perturbations that create the most rapid growth of energy in the system. The model is composed of a barotropic quasigeostrophic atmosphere coupled to a 1.5-layer quasigeostrophic ocean, each linearized about a zonally invariant mean state, and with atmospheric and ocean surface temperature obeying a simple heat balance. Eigenanalysis of the system reveals modes of interannual variability that resemble the so-called Antarctic Circumpolar Wave (ACW), consistent with an earlier analytical study of the system. The optimal excitation of these modes relative to an energy norm is found to be a perturbation almost entirely restricted to the ocean momentum field and is shown to resemble strongly the optimal perturbations in energy for the system. Over interannual time scales most rapid growth is seen in zonal wavenumbers 4–6, despite the fact that the least-damped eigenmodes of the system are of a lower zonal wavenumber. The rapid transient growth in energy occurs by extracting perturbation energy from the mean state through advection of the mean meridional oceanic temperature gradient. This transient growth of high-zonal-wavenumber modes dominates the model’s variability when it is forced by noise that is white in space or time. A dominant low-zonal-wavenumber response, consistent with the observed and modeled ACW, occurs only when the forcing is red in space or time, with decorrelation scales greater than 3 yr or 10 000 km. It is concluded that, if the ACW is a coupled mode analogous to that supported in this simple model, then it is excited by other large-scale phenomena such as ENSO rather than by sources of higher-frequency forcing.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3