The NIMA Method for Improved Moment Estimation from Doppler Spectra

Author:

Morse Corinne S.1,Goodrich Robert K.2,Cornman Larry B.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. National Center for Atmospheric Research, and Department of Mathematics, University of Colorado, Boulder, Colorado

Abstract

Abstract The NCAR Improved Moments Algorithm (NIMA) for estimating moments from wind measurement devices that measure Doppler spectra as a function of range is described in some detail. Although NIMA's main application has been for real-time processing of wind profiler data, it has also been successfully applied to Doppler lidar and weather radar data. Profiler spectra are often contaminated by a variety of sources including aircraft, birds, velocities exceeding the Nyquist velocity, radio frequency interference, and ground clutter. The NIMA method uses mathematical analysis, fuzzy logic synthesis, and global image processing algorithms to mimic human experts' ability to identify atmospheric signals in the presence of such contaminants. NIMA is configurable and its processing can be tuned to optimize performance for a given profiler site. Once configured, NIMA is a fully automated algorithm that runs in real time to produce Doppler moments and a confidence assessment of those moments. These confidence values are useful in the generation and assessment of wind and turbulence estimates and are important when these quantities are used in critical situations such as airport operations. A simulation study is used to compare NIMA performance with that of a simple peak picking algorithm in the presence of ground clutter, RFI, and point targets. Some performance results for the NIMA confidence algorithm are also given.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3