Let’s Unleash the Network Judgment: A Self-Supervised Approach for Cloud Image Analysis

Author:

Dematties Dario12,Raut Bhupendra A.13,Park Seongha12,Jackson Robert C.13,Shahkarami Sean2,Kim Yongho12,Sankaran Rajesh12,Beckman Pete12,Collis Scott M.13,Ferrier Nicola12

Affiliation:

1. a Northwestern Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL 60208, USA

2. b Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

3. c Environmental Sciences Division, Argonne National Laboratory, Lemont, IL 60439, USA

Abstract

Abstract Accurate cloud type identification and coverage analysis are crucial in understanding the Earth’s radiative budget. Traditional computer vision methods rely on low-level visual features of clouds for estimating cloud coverage or sky conditions. Several handcrafted approaches have been proposed; however, scope for improvement still exists. Newer deep neural networks (DNNs) have demonstrated superior performance for cloud segmentation and categorization. These methods, however, need expert engineering intervention in the preprocessing steps—in the traditional methods—or human assistance in assigning cloud or clear sky labels to a pixel for training DNNs. Such human mediation imposes considerable time and labor costs. We present the application of a new self-supervised learning approach to autonomously extract relevant features from sky images captured by ground-based cameras, for the classification and segmentation of clouds. We evaluate a joint embedding architecture that uses self-knowledge distillation plus regularization. We use two datasets to demonstrate the network’s ability to classify and segment sky images—one with ∼ 85,000 images collected from our ground-based camera and another with 400 labeled images from the WSISEG database. We find that this approach can discriminate full-sky images based on cloud coverage, diurnal variation, and cloud base height. Furthermore, it semantically segments the cloud areas without labels. The approach shows competitive performance in all tested tasks, suggesting a new alternative for cloud characterization.

Publisher

American Meteorological Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earth Sciences Unleashed;Advances in Environmental Engineering and Green Technologies;2024-04-12

2. Optimizing cloud motion estimation on the edge with phase correlation and optical flow;Atmospheric Measurement Techniques;2023-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3