Effects of Retrospective Gauge-Based Readjustment of Multisensor Precipitation Estimates on Hydrologic Simulations

Author:

Zhang Yu1,Reed Seann1,Kitzmiller David1

Affiliation:

1. National Oceanic and Atmospheric Administration/National Weather Service Office of Hydrologic Development, Silver Spring, Maryland

Abstract

Abstract This paper presents methodologies for mitigating temporally inconsistent biases in National Weather Service (NWS) real-time multisensor quantitative precipitation estimates (MQPEs) through rain gauge–based readjustments, and examines their effects on streamflow simulations. In this study, archived MQPEs over 1997–2006 for the Middle Atlantic River Forecast Center (MARFC) area of responsibility were readjusted at monthly and daily scales using two gridded gauge products. The original and readjusted MQPEs were applied as forcing to the NWS Distributed Hydrologic Model for 12 catchments in the domain of MARFC. The resultant hourly streamflow simulations were compared for two subperiods divided along November 2003, when a software error that gave rise to a low bias in MQPEs was fixed. It was found that readjustment at either time scale improved the consistency in the bias in streamflow simulations. For the earlier period, independent monthly and daily readjustments considerably improved the streamflow simulations for most basins as judged by bias and correlation. By contrast, for the later period the effects were mixed across basins. It was also found that 1) readjustments tended to be more effective in the cool rather than warm season, 2) refining the readjustment resolution to daily had mixed effects on streamflow simulations, and 3) at the daily scale, redistributing gauge rainfall is beneficial for periods with substantial missing MQPEs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. National Weather Service River Forecast System—Snow Accumulation and Ablation Model;Anderson,1973

2. A point energy and mass balance model of a snow cover;Anderson,1976

3. Using SSURGO data to improve Sacramento Model a priori parameter estimates;Anderson;J. Hydrol.,2006

4. The NWS river forecast system—Catchment modeling;Burnash,1995

5. A generalized streamflow simulation system—Conceptual modeling for digital computers;Burnash,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3