Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for Mountains

Author:

Mott Rebecca1,Lehning Michael1

Affiliation:

1. WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

Abstract

Abstract The inhomogeneous snow distribution found in alpine terrain is the result of wind and precipitation interacting with the snow surface. During major snowfall events, preferential deposition of snow and transport of previously deposited snow often takes place simultaneously. Both processes, however, are driven by the local wind field, which is influenced by the local topography. In this study, the meteorological model Advanced Regional Prediction System (ARPS) was used to compute mean flow fields of 50-m, 25-m-, 10-m-, and 5-m grid spacing to investigate snow deposition patterns resulting from two snowfall events on a mountain ridge in the Swiss Alps. Only the initial adaptation of the flow field to the topography is calculated with artificial boundary conditions. The flow fields then drive the snow deposition and transport module of Alpine3D, a model of mountain surface processes. The authors compare the simulations with partly new measurements of snow deposition on the Gaudergrat ridge. On the basis of these four grid resolutions, it was possible to investigate the effects of numerical resolution in the calculation of wind fields and in the calculation of the associated snow deposition. The most realistic wind field and deposition patterns were obtained with the highest resolution of 5 m. These high-resolution simulations confirm the earlier hypothesis that preferential deposition is active at the ridge scale and true redistribution—mainly via saltation—forms smaller-scale deposition patterns, such as dunes and cornices.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference44 articles.

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3