The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation

Author:

Krause Paul1,Restrepo Juan M.2

Affiliation:

1. Department of Mathematics, The University of Arizona, Tucson, Arizona

2. Department of Mathematics, and Department of Physics, The University of Arizona, Tucson, Arizona

Abstract

Abstract The diffusion kernel filter is a sequential particle-method approach to data assimilation of time series data and evolutionary models. The method is applicable to nonlinear/non-Gaussian problems. Within branches of prediction it parameterizes small fluctuations of Brownian-driven paths about deterministic paths. Its implementation is relatively straightforward, provided a tangent linear model is available. A by-product of the parameterization is a bound on the infinity norm of the covariance matrix of such fluctuations (divided by the grid model dimension). As such it can be used to define a notion of “prediction” itself. It can also be used to assess the short time sensitivity of the deterministic history to Brownian noise or Gaussian initial perturbations. In pure oceanic Lagrangian data assimilation, the dynamics and the statistics are nonlinear and non-Gaussian, respectively. Both of these characteristics challenge conventional methods, such as the extended Kalman filter and the popular ensemble Kalman filter. The diffusion kernel filter is proposed as an alternative and is evaluated here on a problem that is often used as a test bed for Lagrangian data assimilation: it consists of tracking point vortices and passive drifters, using a dynamical model and data, both of which have known error statistics. It is found that the diffusion kernel filter captures the first few moments of the random dynamics, with a computational cost that is competitive with a particle filter estimation strategy. The authors also introduce a clustered version of the diffusion kernel filter (cDKF), which is shown to be significantly more efficient with regard to computational cost, at the expense of a slight degradation in the description of the statistics of the dynamical history. Upon parallelizing branches of prediction, cDKF can be computationally competitive with EKF.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Accelerated Monte Carlo for optimal estimation of time series.;Alexander;J. Stat. Phys.,2005

2. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking.;Arulampalam;IEEE Trans. Signal Process.,2002

3. ADIFOR: Automatic differentiation in a source translation environment.;Bischoff,1992

4. Optimal prediction with memory.;Chorin;Physica D,2002

5. Discrete filtering using branching and interacting particle systems.;Crisan;Markov Process. Related Fields,1999

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3