A Bayesian Framework for Storm Tracking Using a Hidden-State Representation

Author:

Scharenbroich Lucas1,Magnusdottir Gudrun2,Smyth Padhraic1,Stern Hal3,Wang Chia-chi2

Affiliation:

1. Department of Computer Science, University of California, Irvine, Irvine, California

2. Department of Earth System Science, University of California, Irvine, Irvine, California

3. Department of Statistics, University of California, Irvine, Irvine, California

Abstract

Abstract A probabilistic tracking model is introduced that identifies storm tracks from feature vectors that are extracted from meteorological analysis data. The model assumes that the genesis and lysis times of each track are unknown and estimates their values along with the track’s position and storm intensity over time. A hidden-state dynamics model (Kalman filter) characterizes the temporal evolution of the storms. The model uses a Bayesian methodology for estimating the unknown lifetimes (genesis–lysis pairs) and tracks of the storms. Prior distributions are placed over the unknown parameters and their posterior distributions are estimated using a Markov Chain Monte Carlo (MCMC) sampling algorithm. The posterior distributions are used to identify and report the most likely storm tracks in the data. This approach provides a unified probabilistic framework that accounts for uncertainty in storm timing (genesis and lysis), storm location and intensity, and the feature detection process. Thus, issues such as missing observations can be accommodated in a statistical manner without human intervention. The model is applied to the field of relative vorticity at the 975-hPa level of analysis from the National Centers for Environmental Prediction Global Forecast System during May–October 2000–02, in the tropical east Pacific. Storm tracks in the National Hurricane Center best-track data (HURDAT) for the same period are used to assess the performance of the storm identification and tracking model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Eastern North Pacific hurricane season of 1990.;Avila;Mon. Wea. Rev.,1991

2. Tracking and Data Association.;Bar-Shalom,1987

3. Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses.;Bengtsson;Tellus,2007

4. Markov Chain Monte Carlo data association for target tracking.;Bergman,2000

5. General methods for monitoring convergence of iterative simulations.;Brooks;J. Comput. Graph. Stat.,1998

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3