The Impact of Lightning Data Assimilation on a Winter Storm Simulation over the North Pacific Ocean

Author:

Pessi Antti T.1,Businger Steven1

Affiliation:

1. University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract In this paper, the potential of lightning data assimilation to improve NWP forecasts over data-sparse oceans is investigated using, for the first time, a continuous, calibrated lightning data stream. The lightning data employed in this study are from the Pacific Lightning Detection Network/Long-Range Lightning Detection Network (PacNet/LLDN), which has been calibrated for detection efficiency and location accuracy. The method utilizes an empirical lightning–convective rainfall relationship, derived specifically from North Pacific winter storms observed by PacNet/LLDN. The assimilation method nudges the model’s latent heating rates according to rainfall estimates derived from PacNet/LLDN lightning observations. The experiment was designed to be employed in an operational setting. To illustrate the promise of the approach, lightning data from a notable extratropical storm that occurred over the northeast Pacific Ocean in late December 2002 were assimilated into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The storm exhibited a very electrically active cold front with most of the lightning observed 300–1200 km away from the storm center. The storm deepened rapidly (12 hPa in 12 h) and was poorly forecast by the operational models. The assimilation of lightning data generally improved the pressure and wind forecasts, as the validation of the model results using available surface and satellite data revealed. An analysis is presented to illustrate the impact of assimilation of frontal lightning on the storm development and dynamics. The links among deep convection, thermal wind along the front, and cyclogenesis are explicitly explored.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3