Alpine Stream Temperature Response to Storm Events

Author:

Brown Lee E.1,Hannah David M.2

Affiliation:

1. School of Geography, University of Leeds, Leeds, United Kingdom

2. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Abstract

Abstract Despite continued interest in meteorological influences on the thermal variability of river systems, there are few detailed studies of stream temperature dynamics during storm events. This paper reports high-resolution (15 min) water column and streambed temperature data for storm events of contrasting magnitude, duration, and intensity for three streams (draining glacier, snow, and groundwater sources) across an alpine river system during summers 2002 and 2003. The results demonstrate clear spatial and temporal differences in water column and streambed thermal responses to precipitation events and streamflow peaks. Analysis of all storms across the three sites showed a decrease in water column temperature for 75% of events, with significant negative relationships between stream temperature and precipitation magnitude, precipitation intensity, and stream discharge peaks. Temperature decreases of 10.4°C were recorded, but temperature increases were less marked at up to 2.3°C. Temperature response to precipitation was dampened with increasing depth into the streambed at all sites. Spatial and temporal differences in thermal response to storm events were controlled by precipitation and stream discharge peak characteristics (above) plus antecedent basin conditions, which together determine the nature and rapidity of hydrological response. In this steep alpine basin, stream temperature variability appears to be enhanced by quick routing of precipitation to the river channel (i.e., direct precipitation/channel interception, rapid surface flow over impermeable bedrock/thin alpine soils, and subsurface flow through highly weathered scree slopes). This research highlights the need for integrated hydrometeorological research of precipitation event–hydrological response–stream temperature interactions to advance understanding of runoff generation processes driving event-scale thermal dynamics in alpine and other river systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.;Alexander;Ground Water,2003

2. Observations of the thermal regime of a stream of the Eastern Transvaal, with reference to certain aquatic Pulmonata.;Appleton;South Afr. J. Sci.,1976

3. Topographical and ecological controls of runoff generation and lateral flows in mountain catchments.;Becker;IAHS Publ.,1998

4. Alpine stream habitat classification: An alternative approach incorporating the role of dynamic water source contributions.;Brown;Arct. Antarct. Alp. Res.,2003

5. Spatial and temporal water column and streambed temperature dynamics within an alpine catchment: Implications for benthic communities.;Brown;Hydrol. Processes,2005

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3