The Water-Following Performance of Various Lagrangian Surface Drifters Measured in a Dye Release Experiment

Author:

Pawlowicz Rich1ORCID,Chavanne Cédric2,Dumont Dany2

Affiliation:

1. a Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

2. b Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada

Abstract

Abstract Many different surface drifter designs have been developed recently to track near-surface ocean currents, but the degree to which these drifters slip through the water because of mechanisms associated with the wind is poorly known. In the 2020 Tracer Release Experiment (TReX), 19 drifters of eight different designs, both commercially available and home-built, were simultaneously released with a patch of rhodamine dye. The dye rapidly spread vertically through the mixed layer but also more slowly dispersed horizontally. Although winds were light, drifters moved downwind from the dye patch at speeds of 3–17 cm s−1 (0.6%–4% of wind speed) depending on the design type. Measurements were made of wind and ocean conditions, and these were incorporated into a boundary layer model at the air–sea interface to estimate complete velocity profiles above and below the surface. Then, a steady-state drag model is used with these profiles to successfully predict drifter slip. Drogued drifters (those with a subsurface drag element) can be affected by Eulerian shear in the upper 0.5 m of the water column, as well as the Stokes drift, but undrogued drifters are in addition greatly affected by direct wind drag, and possibly by resonant interactions with waves. The dye, cycling vertically in the mixed layer, is largely unaffected by all of these factors; therefore, even “perfect” surface drifters do not move with a mixed layer tracer. Significance Statement Surface drifters are used by oceanographers to measure ocean surface currents. However, different designs also slip downwind through the water at rates that are poorly known but are typically around a few percent of the wind speed. In 2020 we simultaneously deployed drifters of eight different designs along with rhodamine dye in a field experiment to see how well the different designs track the water. Here we independently and successfully model drifter slippage for the different designs. Slip factors are then estimated for a range of wind and ocean conditions.

Funder

Marine Environmental Observation Prediction and Response Network

Reseau Quebec Maritime

NSERC

Publisher

American Meteorological Society

Reference50 articles.

1. Application of HF radar currents to oil spill modelling;Abascal, A. J.,2009

2. A global perspective on Langmuir turbulence in the ocean surface boundary layer;Belcher, S. E.,2012

3. A fuzzy-based framework for assessing uncertainty in drift prediction using observed currents and winds;Blanken, H.,2021

4. Lateral dispersion of dye and drifters in the center of a very large lake;Choi, J.,2020

5. The free surface turbulent shear layer;Csanady, G. T.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3