Affiliation:
1. Research Center of Mathematical Modelling (MODEMAT), and Department of Mechanical Engineering, Escuela Politécnica Nacional, Quito, Ecuador
2. Department of Mechanical Engineering, Escuela Politécnica Nacional, Quito, Ecuador
Abstract
AbstractAn important requirement in extreme value analysis (EVA) is for the working variable to be identically distributed. However, this is typically not the case in wind waves, because energy components with different origins belong to separate data populations, with different statistical properties. Although this information is available in the wave spectrum, the working variable in EVA is typically the total significant wave height Hs, a parameter that does not contain information of the spectral energy distribution, and therefore does not fulfill this requirement. To gain insight in this aspect, we develop here a covariate EVA application based on spectral partitioning. We observe that in general the total Hs is inappropriate for EVA, leading to potential over- or underestimation of the projected extremes. This is illustrated with three representative cases under significantly different wave climate conditions. It is shown that the covariate analysis provides a meaningful understanding of the individual behavior of the wave components, in regard to the consequences for projecting extreme values.
Funder
Escuela Politécnica Nacional
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献