An Updated Estimate of Salinity for the Atlantic Ocean Sector Using Temperature–Salinity Relationships

Author:

Goes Marlos1,Christophersen Jonathan1,Dong Shenfu2,Goni Gustavo2,Baringer Molly O.2

Affiliation:

1. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Physical Oceanography Division, Miami, Florida

2. NOAA/AOML/Physical Oceanography Division, Miami, Florida

Abstract

AbstractSimultaneous temperature and salinity profile measurements are of extreme importance for research; operational oceanography; research and applications that compute content and transport of mass, heat, and freshwater in the ocean; and for determining water mass stratification and mixing rates. Historically, temperature profiles are much more abundant than simultaneous temperature and salinity profiles. Given the importance of concurrent temperature and salinity profiles, several methods have been developed to derive salinity solely based on temperature profile observations, such as expendable bathythermograph (XBT) temperature measurements, for which concurrent salinity observations are typically not available. These empirical methods used to date contain uncertainties as a result of temporal changes in salinity and seasonality in the mixed layer, and are typically regionally based. In this study, a new methodology is proposed to infer salinity in the Atlantic Ocean from the water surface to 2000-m depth, which addresses the seasonality in the upper ocean and makes inferences about longer-term changes in salinity. Our results show that when seasonality is accounted for, the variance of the residuals is reduced in the upper 150 m of the ocean and the dynamic height errors are smaller than 4 cm in the whole study domain. The sensitivity of the meridional heat and freshwater transport to different empirical methods of salinity estimation is studied using the high-density XBT transect across 34.5°S in the South Atlantic Ocean. Results show that accurate salinity estimates are more important on the boundaries, suggesting that temperature–salinity compensation may be also important in those regions.

Funder

NOAA/AOML and Univ. Miami/CIMAS

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3