Internal Wave and Turbulence Observations with Very High-Resolution Temperature Sensors along the Cabauw Mast

Author:

van Haren Hans1,Bosveld Fred C.2

Affiliation:

1. a Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Netherlands

2. b Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

Abstract Knowledge about the characteristics of the atmospheric boundary layer is vital for the understanding of redistribution of air and suspended contents that are particularly driven by turbulent motions. Despite many modeling studies, detailed observations are still demanded of the development of turbulent exchange under stable and unstable conditions. In this paper, we present an attempt to observationally describe atmospheric internal waves and their associated turbulent eddies in detail, under varying stable conditions. Therefore, we mounted 198 high-resolution temperature (T) sensors with 1-m spacing on a 200-m-long cable. The instrumented cable was attached along the 213-m-tall meteorological mast of Cabauw, Netherlands, during late summer 2017. The mast has standard meteorological equipment at extendable booms at six levels in height. A sonic anemometer is at 60 m above ground. The T sensors have a time constant in air of τa ≈ 3 s and an apparent drift about 0.1°C month−1. Also due to radiation effects, short-term measurement instability is 0.05°C h−1 during nighttime and 0.5°C h−1 during daytime. These T-sensor characteristics hamper quantitative atmospheric turbulence research, due to a relatively narrow inertial subrange of maximum one order of magnitude. Nevertheless, height–time images from two contrasting nights show internal waves up to the buoyancy period of about 300 s, and shear and convective deformation of the stratification over the entire 197-m range of observations, supported by nocturnal marginally stable stratification. Moderate winds lead to 20-m-tall convection across weaker stratification, weak winds to episodic <10-m-tall shear instability across larger stratification.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3