Potential of Dual-Frequency Radar and Microwave Radiometer Synergy for Water Vapor Profiling in the Cloudy Trade Wind Environment

Author:

Schnitt Sabrina1,Löhnert Ulrich2,Preusker René3

Affiliation:

1. a Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany

2. b Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

3. c Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany

Abstract

AbstractHigh-resolution boundary layer water vapor profile observations are essential for understanding the interplay between shallow convection, cloudiness, and climate in the trade wind atmosphere. As current observation techniques can be limited by low spatial or temporal resolution, the synergistic benefit of combining ground-based microwave radiometer (MWR) and dual-frequency radar is investigated by analyzing the retrieval information content and uncertainty. Synthetic MWR brightness temperatures, as well as simulated dual-wavelength ratios of two radar frequencies are generated for a combination of Ka and W band (KaW), as well as differential absorption radar (DAR) G-band frequencies (167 and 174.8 GHz, G2). The synergy analysis is based on an optimal estimation scheme by varying the configuration of the observation vector. Combining MWR and KaW only marginally increases the retrieval information content. The synergy of MWR with G2 radar is more beneficial due to increasing degrees of freedom (4.5), decreasing retrieval errors, and a more realistic retrieved profile within the cloud layer. The information and profile below and within the cloud is driven by the radar observations, whereas the synergistic benefit is largest above the cloud layer, where information content is enhanced compared to an MWR-only or DAR-only setup. For full synergistic benefits, however, G-band radar sensitivities need to allow full-cloud profiling; in this case, the results suggest that a combined retrieval of MWR and G-band DAR can help close the observational gap of current techniques.

Funder

Bundesministerium für Bildung und Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3