Calibration Method of Low-Light Sensor Based on Bridge Lights

Author:

Ma Shuo1,Yan Wei1,Huang Yunxian1,Jiang Jun1,Hu Shensen1,Wang Yingqiang1

Affiliation:

1. College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China

Abstract

AbstractMany quantitative uses of the nighttime imagery provided by low-light sensors, such as the day–night band (DNB) on board the Suomi–National Polar-Orbiting Partnership (SNPP), have emerged recently. Owing to the low nighttime radiance, low-light calibration at night must be investigated in detail. Traditional vicarious calibration methods are based on some targets with nearly invariant surface properties under lunar illumination. However, the relatively stable light emissions may also be used to realize the radiometric calibration under low light. This paper presents a low-light calibration method based on bridge lights, and Visible Infrared Imaging Radiometer Suite (VIIRS) DNB data are used to assess the proposed method. A comparison of DNB high-gain-stage (HGS) radiances over a 2-yr period from August 2012 to July 2014 demonstrates that the predictions are consistent with the observations, and the agreement between the predictions and the observations is on the order of −2.9% with an uncertainty of 9.3% (1σ) for the Hangzhou Bay Bridge and −3.9% with an uncertainty of 7.2% (1σ) for the Donghai Bridge. Such a calibration method based on stable light emissions has a wide application prospect for the calibration of low-light sensors at night.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Satellite Hyperspectral Nighttime Light Observation and Identification with DESIS;Remote Sensing;2024-03-06

2. Applicability Analysis of Three Atmospheric Radiative Transfer Models in Nighttime;Atmosphere;2024-01-19

3. Radiometric Calibration of SDGSAT-1 Nighttime Light Payload;IEEE Transactions on Geoscience and Remote Sensing;2024

4. 风云三号黎明星微光探测及应用综述;Acta Optica Sinica;2022

5. Radiometric calibration of low light imager based on specialized light sources;Seventh Symposium on Novel Photoelectronic Detection Technology and Applications;2021-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3