A Novel “FlocDrifter” Platform for Observing Flocculation and Turbulence Processes in a Lagrangian Frame of Reference

Author:

MacDonald Iain T.1,Mullarney Julia C.2

Affiliation:

1. National Institute of Water and Atmospheric Research, Hamilton, New Zealand

2. Coastal Marine Group, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand

Abstract

AbstractA novel drifter platform was used to measure the properties of aggregated particles called flocs—a key component of sediment transport in muddy environments. Also concurrently measured were turbulence, suspended sediment concentration (SSC), velocity, and salinity in both Lagrangian and Eulerian frames of reference. In Lagrangian mode the system performed well in a heavily sediment-laden river, providing measurements over a large spatial scale. The platform navigated itself through a complex geometry encompassing many bends and significant depth changes. Observed velocities relative to the drifter and salinities indicated that the drifter motion was almost Lagrangian with minimal slippage between the drifter and the water motion. The small amount of slippage that did occur was sufficient to ensure that the drifter oriented itself into the oncoming flow.High-quality in situ images of flocs were collected using a high-magnification floc camera (FlocCam). An automatic image analysis routine was developed to identify and characterize flocs within each FlocCam image, employing an artificial neural network (ANN) to ensure that only in-focus particles were included in the analyses. The results indicated that the FlocCam system had an upper working SSC limit of around 350–400 mg L−1.The SSC estimates show that the drifters encountered considerable variability as they were advected downstream; however, concentrations predominantly remained under the image processing threshold of 350–400 mg L−1. The system captured the evolution of floc characteristics over short spatial scales (hundreds of meters). The median floc size (d50) was found to be positively correlated with SSC (r2 = 0.5). A comparison between Eulerian and Lagrangian floc histories can then be used to evaluate the role of antecedent conditions within the flocculation process.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3