Relating Wind and Stress under Tropical Cyclones with Scatterometer

Author:

Liu W. Timothy1,Tang Wenqing1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

AbstractOcean surface stress, the turbulent transport of momentum, is largely derived from wind through a drag coefficient. In tropical cyclones (TCs), scatterometers have difficulty measuring strong wind and there is large uncertainty in the drag coefficient. This study postulates that the microwave backscatter from ocean surface roughness, which is in equilibrium with local stress, does not distinguish between weather systems. The reduced sensitivity of scatterometer wind retrieval algorithms under the strong wind is an air–sea interaction problem that is caused by a change in the behavior of the drag coefficient rather than a sensor problem. Under this assumption, a stress retrieval algorithm developed over a moderate wind range is applied to retrieve stress under the strong winds of TCs. Over a moderate wind range, the abundant wind measurements and the more established drag coefficient value allow for sufficient stress data to be computed from wind to develop a stress retrieval algorithm for the scatterometer. Using 0.9 million coincident stress and wind pairs, the study shows that the drag coefficient decreases with wind speed at a much steeper rate than previously revealed, for wind speeds over 25 m s−1. The result implies that the ocean applies less drag to inhibit TC intensification, and that TCs cause less ocean mixing and surface cooling than previous studies indicated.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3