Impacts of Instrumented Bottom Frame on Flow and Turbulence Measurements

Author:

Chen Zhixing12,Bian Changwei34,Jiang Wensheng1,Lu Youyu5,Mao Xinyan234,Liu Xiaolei6,Wang Tao1

Affiliation:

1. a Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China

2. b College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

3. c Physical Oceanography Laboratory/CIMST, Ocean University of China, Qingdao, China

4. d Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

5. e Ocean and Ecosystem Sciences Division, Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada

6. f Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China

Abstract

Abstract A series of laboratory experiments are carried out to demonstrate the impacts of instrumented bottom frame legs on flow and turbulence. The magnitudes of vertical velocity, turbulent kinetic energy, dissipation, and shear stress induced by the frame legs depend on several factors, including the diameter and number of the frame legs, distances between the legs and the observational location, and the magnitude of the incoming flow and its direction with respect to the layout of the frame. In situ observations were carried out near the mouth of the Yellow River using two acoustic Doppler velocimeters mounted on a bottom frame. The estimated vertical velocity and turbulent kinetic energy dissipation rate show a significant asymmetry with flood and ebb tidal flows. This asymmetry can be partly explained by the influences of the bottom frame legs. Finally, the design and deployment principles of bottom frames are discussed for the purpose of reducing the impacts of the frame legs. Significance Statement Instrumented bottom frames are widely used for observations in the oceanic bottom boundary layer and above. However, the impacts of frame legs on the observed flow and turbulence have rarely been investigated. A series of laboratory experiments demonstrate that frame legs can induce vertical flow and enhanced turbulence, and the magnitudes of these influences vary with the size and layout of the frame legs and the magnitude and direction of the background flow. The results of the laboratory experiments can partially explain an “asymmetry” behavior of the vertical flow and turbulent kinetic energy with the flood and ebb tidal flows, derived from in situ observations near the mouth of the Yellow River.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3