An Automated Detection Methodology for Dry Well-Mixed Layers

Author:

Nicholls Stephen D.1,Mohr Karen I.2

Affiliation:

1. Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Laboratory for Atmospheres, Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

AbstractThe intense surface heating over arid land surfaces produces dry well-mixed layers (WML) via dry convection. These layers are characterized by nearly constant potential temperature and low, nearly constant water vapor mixing ratio. To further the study of dry WMLs, we created a detection methodology and supporting software to automate the identification and characterization of dry WMLs from multiple data sources including rawinsondes, remote sensing platforms, and model products. The software is a modular code written in Python, an open-source language. Radiosondes from a network of synoptic stations in North Africa were used to develop and test the WML detection process. The detection involves an iterative decision tree that ingests a vertical profile from an input data file, performs a quality check for sufficient data density, and then searches upward through the column for successive points where the simultaneous changes in water vapor mixing ratio and potential temperature are less than the specified maxima. If points in the vertical profile meet the dry WML identification criteria, statistics are generated detailing the characteristics of each layer in the profile. At the end of the vertical profile analysis, there is an option to plot analyzed profiles in a variety of file formats. Initial results show that the detection methodology can be successfully applied across a wide variety of input data and North African environments and for all seasons. It is sensitive enough to identify dry WMLs from other types of isentropic phenomena such as subsidence layers and distinguish the current day’s dry WML from previous days.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3