Sediment resuspension and transport from a glider integrated Laser In Situ Scattering and Transmissometry (LISST) particle analyzer

Author:

Miles Travis1,Slade Wayne2,Glenn Scott1

Affiliation:

1. a Rutgers, The State University of New Jersey, New Brunswick, New Jersey

2. b Sequoia Scientific, Inc., Bellevue, Washington

Abstract

AbstractSuspended particle size and concentration are critical parameters necessary to understand water quality, sediment dynamics, carbon flux, and ecosystem dynamics among other ocean processes. In this study we detail the integration of a Sequoia Scientific, Inc., Laser In situ Scattering and Transmissometry (LISST) sensor into a Teledyne Webb Research Slocum autonomous underwater glider. These sensors are capable of measuring particle size, concentration, and beam attenuation by particles in size ranges from 1.00 to 500 μm at a resolution of 1 Hz. The combination of these two technologies provides the unique opportunity to measure particle characteristics persistently at specific locations, or survey regional domains from a single profiling sensor. In this study we present the sensor integration framework, detail quality assurance and control (QAQC) procedures, as well as provide a case study of storm driven sediment resuspension and transport. Specifically, Rutgers glider RU28 was deployed with an integrated LISST-Glider for 18 days in September of 2017. During this time period it sampled the nearshore environment off of coastal New Jersey, capturing full water column sediment resuspension during a coastal storm event. A novel method for in situ background corrections is demonstrated and used to mitigate long-term bio-fouling of the sensor windows. Additionally, we present a method for removing Schlieren contaminated time periods utilizing coincident conductivity temperature and depth, fluorometer, and optical backscatter data. The combination of LISST sensors and autonomous platforms has the potential to revolutionize our ability to capture suspended particle characteristics throughout the world’s oceans.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3