Basin-Scale Prediction of Sea Surface Temperature with Artificial Neural Networks

Author:

Patil Kalpesh1,Deo M. C.1

Affiliation:

1. Indian Institute of Technology, Bombay, Mumbai, India

Abstract

AbstractThe prediction of sea surface temperature (SST) on the basis of artificial neural networks (ANNs) can be viewed as complementary to numerical SST predictions, and it has fairly sustained in the recent past. However, one of its limitations is that such ANNs are site specific and do not provide simultaneous spatial information similar to the numerical schemes. In this work we have addressed this issue by presenting basin-scale SST predictions based on the operation of a very large number of individual ANNs simultaneously. The study area belongs to the basin of the tropical Indian Ocean (TIO) having coordinates of 30°N–30°S, 30°–120°E. The network training and testing are done on the basis of HadISST data of the past 140 yr. Monthly SST anomalies are predicted at 3813 nodes in the basin and over nine time steps into the future with more than 20 million ANN models. The network testing indicated that the prediction skill of ANNs is attractive up to certain lead times depending on the subbasin. The ANN models performed well over both the western Indian Ocean (WIO) and eastern Indian Ocean (EIO) regions up to 5 and 4 months lead time, respectively, as judged by the error statistics of the correlation coefficient and the normalized root-mean-square error. The prediction skill of the ANN models for the TIO region is found to be better than the physics-based coupled atmosphere–ocean models. It is also observed that the ANNs are capable of providing an advanced warning of the Indian Ocean dipole as well as abnormal basin warming.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3