Experimental Confirmation of Stokes Drift Measurement by High-Frequency Radars

Author:

Dussol Abïgaëlle1,Chavanne Cédric1,Gregorio Sandy1,Dumont Dany1

Affiliation:

1. a Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada

Abstract

Abstract High-frequency radars (HFR) remotely measure ocean surface currents based on the Doppler shift of electromagnetic waves backscattered by surface gravity waves with one-half of the electromagnetic wavelength, called Bragg waves. Their phase velocity is affected by their interactions with the mean Eulerian currents and with all of the other waves present at the sea surface. Therefore, HFRs should measure a quantity related to the Stokes drift in addition to mean Eulerian currents. However, different expressions have been proposed for this quantity: the filtered surface Stokes drift, one-half of the surface Stokes drift, and the weighted depth-averaged Stokes drift. We evaluate these quantities using directional wave spectra measured by bottom-mounted acoustic wave and current (AWAC) profilers in the lower Saint Lawrence Estuary, Quebec, Canada, deployed in an area covered by four HFRs: two Wellen radars (WERA) and two coastal ocean dynamics applications radars (CODAR). Since HFRs measure the weighted depth-averaged Eulerian currents, we extrapolate the Eulerian currents measured by the AWACs to the sea surface assuming linear Ekman dynamics to perform the weighted depth averaging. During summer 2013, when winds are weak, correlations between the AWAC and HFR currents are stronger (0.93) than during winter 2016/17 (0.42–0.62), when winds are high. After adding the different wave-induced quantities to the Eulerian currents measured by the AWACs, however, correlations during winter 2016/17 significantly increase. Among the different expressions tested, the highest correlations (0.80–0.96) are obtained using one-half of the surface Stokes drift, suggesting that HFRs measure the latter in addition to mean Eulerian currents.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3