Surface Wave Impact When Simulating Midlatitude Storm Development

Author:

Wu Lichuan1,Sproson David1,Sahlée Erik1,Rutgersson Anna1

Affiliation:

1. Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Abstract

AbstractSurface gravity waves, present at the air–sea interface, can affect the momentum flux and heat fluxes by modifying turbulence in the lower layers of the atmosphere. How to incorporate wave impacts into model parameterizations is still an open issue. In this study, the influence of a dynamic roughness length (considering instantaneous wave-induced stress), horizontal resolution, and the coupling time resolution between waves and the atmosphere on storm simulations are investigated using sensitivity experiments. Based on the simulations of six midlatitude storms using both an atmosphere–wave coupled model and an atmospheric stand-alone model, the impacts are investigated. Adding the wave-induced stress weakens the storm intensity. Applying a roughness length tuned to an average friction velocity is not enough to capture the simulation results from “true” wave-related roughness length. High-horizontal-resolution models intensify the simulation of storms, which is valid for both coupled and uncoupled models. Compared with the atmospheric stand-alone model, the coupled model (considering the influence of dynamic roughness length) is more sensitive to the model horizontal resolution. During reasonable ranges, the coupling time resolution does not have a significant impact on the storm intensity based on the limited experiments used in this study. It is concluded that the dynamic wave influence (instantaneous wave influence) and the model resolution should be taken into account during the development of forecast and climate models.

Funder

Vetenskapsrådet

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3