Measuring Turbulent Kinetic Energy Dissipation at a Wavy Sea Surface

Author:

Sutherland Peter1,Melville W. Kendall1

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

Abstract

AbstractWave breaking is thought to be the dominant mechanism for energy loss by the surface wave field. Breaking results in energetic and highly turbulent velocity fields, concentrated within approximately one wave height of the surface. To make meaningful estimates of wave energy dissipation in the upper ocean, it is then necessary to make accurate measurements of turbulent kinetic energy (TKE) dissipation very near the surface. However, the surface wave field makes measurements of turbulence at the air–sea interface challenging since the energy spectrum contains energy from both waves and turbulence over the same range of wavenumbers and frequencies. Furthermore, wave orbital velocities can advect the turbulent wake of instrumentation into the sampling volume of the instrument. In this work a new technique for measuring TKE dissipation at the sea surface that overcomes these difficulties is presented. Using a stereo pair of longwave infrared cameras, it is possible to reconstruct the surface displacement and velocity fields. The vorticity of that velocity field can then be considered to be representative of the rotational turbulence and not the irrotational wave orbital velocities. The turbulent kinetic energy dissipation rate can then be calculated by comparing the vorticity spectrum to a universal spectrum. Average surface TKE dissipation calculated in this manner was found to be consistent with near-surface values from the literature, and time-dependent dissipation was found to depend on breaking.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3