Ensemble-Based Variational Method for Nonlinear Inversion of Surface Gravity Waves

Author:

Fujimoto Wataru1,Waseda Takuji1

Affiliation:

1. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan

Abstract

ABSTRACTFreak/rogue waves are considered to be the causes of marine accidents and their generation mechanism is closely related to the formation of wave groups. However, observations that capture the spatiotemporal evolution of coherent wave groups in directional windsea are rather limited. The paper presents a new technique known as the surface wave reconstruction by ensemble adjoint-free data assimilation (SWEAD) method that enables reconstruction of a spatiotemporal wave field covering a large area from wave records limited in observational density and spatial extent. We reconstructed spatiotemporal profiles of nonlinear surface gravity waves from virtual observational data using the adjoint-free four-dimensional variational data assimilation (a4DVar) scheme. The higher-order spectral method (HOSM) is used as a forward deep-water nonlinear wave model in a realistic sea state. The a4DVar scheme uses perturbed ensemble simulations to calculate the cost function gradient and Hessian; thus, construction of an adjoint model is not needed. A few extensions of the a4DVar scheme are proposed in this study. For efficient wave reconstruction, perturbed ensemble simulation results are reused by increasing the searching direction dimension at each iteration while assuring conformity to the perturbed model’s linearity. For regularization, Fourier coefficient magnitudes are constrained by a known power spectrum from the phase-averaged wave model. Twin experiments were conducted for a unidirectional wave with virtual wave gauge data and a multidirectional wave with virtual stereo camera imaging data. For both unidirectional and multidirectional cases, nonlinear freak wave–related wave groups were well reproduced, which is impossible using a linear model.

Funder

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3