Forecasting the Tropical Cyclone Genesis over the Northwest Pacific through Identifying the Causal Factors in Cyclone–Climate Interactions

Author:

Bai Chengzu1,Zhang Ren1,Bao Senliang1,San Liang X.2,Guo Wenbo3

Affiliation:

1. Research Center of Ocean Environment Numerical Simulation, Institute of Meteorology and Oceanography, National University of Defense Technology, and Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science and Technology, Nanjing, China

2. Nanjing Institute of Meteorology, Nanjing, China

3. China Satellite Maritime Tracking and Control Department, Jiangyin, China

Abstract

AbstractHow to extract the causal relations in climate–cyclone interactions is an important problem in atmospheric science. Traditionally, the most commonly used research methodology in this field is time-delayed correlation analysis. This may be not appropriate, since a correlation cannot imply causality, as it lacks the needed asymmetry or directedness between dynamical events. This study introduces a recently developed and very concise but rigorous formula—that is, a formula for information flow (IF)—to fulfill the purpose. A new way to normalize the IF is proposed and then the normalized IF (NIF) is used to detect the causal relation between the tropical cyclone (TC) genesis over the western North Pacific (WNP) and a variety of climate modes. It is shown that El Niño–Southern Oscillation and Pacific decadal oscillation are the dominant factors that modulate the WNP TC genesis. The western Pacific subtropical high and the monsoon trough are also playing important roles in affecting the TCs in the western and eastern regions of the WNP, respectively. With these selected climate indices as predictors, a method of fuzzy graph evolved from a nonparametric Bayesian process (BNP-FG), which is capable of handling situations with insufficient samples, is employed to perform a seasonal TC forecast. A forecast with the classic Poisson regression is also conducted for comparison. The BNP-FG model and the causality analysis are found to provide a satisfactory estimation of the number of TC genesis observed in recent years. Considering its generality, it is expected to be applicable in other climate-related predictions.

Funder

National Natural Science Foundation of China

Specific Fund for the Industrial Site in the City of Tangshan

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3