A Method for Correcting Staggered Pulse Repetition Time (PRT) and Dual Pulse Repetition Frequency (PRF) Processor Errors in Research Radar Datasets

Author:

Alford A. Addison12ORCID,Biggerstaff Michael I.134,Ziegler Conrad L.23,Jorgensen David P.23,Carrie Gordon D.3

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. d Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Mobile weather radars at high frequencies (C, X, K, and W bands) often collect data using staggered pulse repetition time (PRT) or dual pulse repetition frequency (PRF) modes to extend the effective Nyquist velocity and mitigate velocity aliasing while maintaining a useful maximum unambiguous range. These processing modes produce widely dispersed “processor” dealiasing errors in radial velocity estimates. The errors can also occur in clusters in high shear areas. Removing these errors prior to quantitative analysis requires tedious manual editing and often produces “holes” or regions of missing data in high signal-to-noise areas. Here, data from three mobile weather radars were used to show that the staggered PRT errors are related to a summation of the two Nyquist velocities associated with each of the PRTs. Using observations taken during a mature mesoscale convective system, a landfalling tropical cyclone, and a tornadic supercell storm, an algorithm to automatically identify and correct staggered PRT processor errors has been developed and tested. The algorithm creates a smooth profile of Doppler velocities using a Savitzky–Golay filter independently in radius and azimuth and then combined. Errors are easily identified by comparing the velocity at each range gate to its smoothed counterpart and corrected based on specific error characteristics. The method improves past dual PRF correction methods that were less successful at correcting “grouped” errors. Given the success of the technique across low, moderate, and high radial shear regimes, the new method should improve research radar analyses by affording the ability to retain as much data as possible rather than manually or objectively removing erroneous velocities.

Funder

Directorate for Geosciences

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3