Sea State Determination from Ship-Based Geodetic GPS

Author:

Foster James1,Li Ning1,Cheung Kwok Fai1

Affiliation:

1. School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

AbstractOcean waves have a profound impact on navigation, offshore operations, recreation, safety, and the economic vitality of a nation’s maritime and coastal communities. This study demonstrates that ships equipped with geodetic GPS and a radar gauge can provide accurate estimates of sea state. The Research Vessel (R/V) Kilo Moana recorded 1-Hz data for the entire period of a 10-day cruise around the Hawaiian Islands. Solving for precise kinematic positions for the ship and combining these solutions with the ranges from the ship to the sea surface provided by the radar gauge, it was possible to retrieve 1-Hz estimates of the sea surface elevation along the cruise track. Converting these into estimates of significant wave height, strong agreement was found with wave buoy measurements and hindcast wave data. Comparison with buoy data indicates the estimates have errors on the order of 0.22 m, or less than 11% of the wave height. Using wave model predictions of the dominant directions, the data were processed further to correct for the Doppler shift and to estimate the dominant wave period. Although relatively noisy in locations where the predicted wave directions are expected to be poor, in general these estimates also show a good agreement with the wave buoy observations and hindcast wave estimates. A segment of the cruise that formed a circuit allowed for testing the consistency of the ship-based estimates and for determining a dominant wave direction, which was found to agree closely with model predictions.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3