Quality Control of Weather Radar Data Using Polarimetric Variables

Author:

Lakshmanan Valliappa1,Karstens Christopher1,Krause John1,Tang Lin1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Because weather radar data are commonly employed in automated weather applications, it is necessary to censor nonmeteorological contaminants, such as bioscatter, instrument artifacts, and ground clutter, from the data. With the operational deployment of a widespread polarimetric S-band radar network in the United States, it has become possible to fully utilize polarimetric data in the quality control (QC) process. At each range gate, a pattern vector consisting of the values of the polarimetric and Doppler moments, and local variance of some of these features, as well as 3D virtual volume features, is computed. Patterns that cannot be preclassified based on correlation coefficient ρHV, differential reflectivity Zdr, and reflectivity are presented to a neural network that was trained on historical data. The neural network and preclassifier produce a pixelwise probability of precipitation at that range gate. The range gates are then clustered into contiguous regions of reflectivity, with bimodal clustering carried out close to the radar and clustering based purely on spatial connectivity farther away from the radar. The pixelwise probabilities are averaged within each cluster, and the cluster is either retained or censored depending on whether this average probability is greater than or less than 0.5. The QC algorithm was evaluated on a set of independent cases and found to perform well, with a Heidke skill score (HSS) of about 0.8. A simple gate-by-gate classifier, consisting of three simple rules, is also introduced in this paper and can be used if the full QC method is not able to be applied. The simple classifier has an HSS of about 0.6 on the independent dataset.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3